Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Clin Drug Investig ; 43(5): 325-334, 2023 May.
Article in English | MEDLINE | ID: covidwho-20241039

ABSTRACT

BACKGROUND AND OBJECTIVES: Janus kinase (JAK) inhibitors are emerging as a therapeutic option for alopecia areata. The risk of potential adverse events is currently debated. In particular, several safety data for JAK inhibitors are extrapolated from a single study in elderly patients with rheumatoid arthritis treated with tofacitinib or adalimumab/etanercept as a comparator. The population of patients with alopecia areata is clinically and immunologically different from persons with rheumatoid arthritis and tumor necrosis factor (TNF) inhibitors are not effective in these patients. The objective of this systematic review was to analyze available data on the safety of various JAK inhibitors in patients with alopecia areata. METHODS: The systematic review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A literature review was performed by searching PubMed, Scopus and EBSCO databases with the last search on March 13, 2023. RESULTS: In total, 36 studies were included. The frequency and odds ratio (OR) for most common adverse events versus placebo were: for baricitinib hypercholesterolemia (18.2% vs 10.5%, OR = 1.9) and headache (6.1% vs 5.1%, OR = 1.2), for brepocitinib elevated creatinine level (27.7% vs 4.3%, OR = 8.6) and acne (10.6% vs 4.3%, OR = 2.7), for ritlecitinib acne (10.4% vs 4.3%, OR = 2.6) and headache (12.5% vs 10.6%, OR = 1.2) and for deuruxolitinib headache (21.4% vs 9.1%, OR = 2.7) and acne (13.6% vs 4.5%, OR = 3.3). The respective numbers for upper respiratory infections were: baricitinib (7.3% vs 7.0%, OR = 1.0) and brepocitinib (23.4% vs 10.6%, OR = 2.6); for nasopharyngitis: ritlecitinib (12.5% vs 12.8%, OR = 1.0) and deuruxolitinib (14.6% vs 2.3%, OR = 7.3). CONCLUSIONS: The most common side effects of JAK inhibitors in patients with alopecia areata were headache and acne. The OR for upper respiratory tract infections varied from over 7-fold increased to comparable to placebo. The risk of serious adverse events was not increased.


Subject(s)
Alopecia Areata , Arthritis, Rheumatoid , Janus Kinase Inhibitors , Humans , Aged , Janus Kinase Inhibitors/adverse effects , Alopecia Areata/drug therapy , Alopecia Areata/chemically induced , Protein Kinase Inhibitors/adverse effects , Arthritis, Rheumatoid/drug therapy , Alopecia/drug therapy
2.
Am J Dermatopathol ; 45(1): 64-68, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2305584

ABSTRACT

ABSTRACT: Ponatinib is a third-generation tyrosine kinase inhibitor used to treat chronic myeloid leukemia and Philadelphia-positive acute lymphoblastic leukemia. Cutaneous toxicities are a commonly reported side effect of ponatinib treatment with "rash" being one of the most common. Specific subtypes are infrequently reported, but include hyperkeratotic, folliculocentric, ichthyosiform, and pityriasis rubra pilaris-like eruptions. Herein, we highlight the clinicopathologic features of 2 cases of ponatinib-induced pityriasis rubra pilaris-like eruptions. We also classify the clinical and histopathologic features of all previously reported ponatinib-associated eruptions in the literature and discuss treatment and potential diagnostic pitfalls.


Subject(s)
Exanthema , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Pityriasis Rubra Pilaris , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/adverse effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Pityriasis Rubra Pilaris/drug therapy , Exanthema/chemically induced
3.
AAPS J ; 25(3): 32, 2023 03 28.
Article in English | MEDLINE | ID: covidwho-2277123

ABSTRACT

Ritlecitinib is a selective, covalent, irreversible inhibitor of Janus kinase 3 (JAK3) and the tyrosine kinase expressed in hepatocellular carcinoma (TEC) family kinases. Pharmacokinetics and safety of ritlecitinib in participants with hepatic (Study 1) or renal (Study 2) impairment were to be characterized from two phase I studies. Due to a study pause caused by the COVID-19 pandemic, the study 2 healthy participant (HP) cohort was not recruited; however, the demography of the severe renal impairment cohort closely matched the study 1 HP cohort. We present results from each study and two innovative approaches to utilizing available HP data as reference data for study 2: a statistical approach using analysis of variance and an in silico simulation of an HP cohort created using a population pharmacokinetics (POPPK) model derived from several ritlecitinib studies. For study 1, the observed area under the curve for 24-h dosing interval and maximum plasma concentration for HPs and their observed geometric mean ratios (participants with moderate hepatic impairment vs HPs) were within 90% prediction intervals from the POPPK simulation-based approach, thereby validating the latter approach. When applied to study 2, both the statistical and POPPK simulation approaches demonstrated that patients with renal impairment would not require ritlecitinib dose modification. In both phase I studies, ritlecitinib was generally safe and well tolerated. These analyses represent a new methodology for generating reference HP cohorts in special population studies for drugs in development with well-characterized pharmacokinetics in HPs and adequate POPPK models. TRIAL REGISTRATION: ClinicalTrials.gov NCT04037865 , NCT04016077 , NCT02309827 , NCT02684760 , and NCT02969044 .


Subject(s)
COVID-19 , Carcinoma, Hepatocellular , Liver Diseases , Liver Neoplasms , Renal Insufficiency , Humans , Healthy Volunteers , Pandemics , Protein Kinase Inhibitors/adverse effects , Area Under Curve
4.
JAMA ; 329(11): 918-932, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2280685

ABSTRACT

Importance: Chronic lymphocytic leukemia (CLL), defined by a minimum of 5 × 109/L monoclonal B cells in the blood, affects more than 200 000 people and is associated with approximately 4410 deaths in the US annually. CLL is associated with an immunocompromised state and an increased rate of complications from infections. Observations: At the time of diagnosis, the median age of patients with CLL is 70 years, and an estimated 95% of patients have at least 1 medical comorbidity. Approximately 70% to 80% of patients with CLL are asymptomatic at the time of diagnosis, and one-third will never require treatment for CLL. Prognostic models have been developed to estimate the time to first treatment and the overall survival, but for patients who are asymptomatic, irrespective of disease risk category, clinical observation is the standard of care. Patients with symptomatic disease who have bulky or progressive lymphadenopathy or hepatosplenomegaly and those with a low neutrophil count, anemia, or thrombocytopenia and/or symptoms of fever, drenching night sweats, and weight loss (B symptoms) should be offered treatment. For these patients, first-line treatment consists of a regimen containing either a covalent Bruton tyrosine kinase (BTK) inhibitor (acalabrutinib, zanubrutinib, or ibrutinib) or a B-cell leukemia/lymphoma 2 (BCL2) inhibitor (venetoclax). There is no evidence that starting either class before the other improves outcomes. The covalent BTK inhibitors are typically used indefinitely. Survival rates are approximately 88% at 4 years for acalabrutinib, 94% at 2 years for zanubrutinib, and 78% at 7 years for ibrutinib. Venetoclax is prescribed in combination with obinutuzumab, a monoclonal anti-CD20 antibody, in first-line treatment for 1 year (overall survival, 82% at 5-year follow-up). A noncovalent BTK inhibitor, pitobrutinib, has shown an overall response rate of more than 70% after failure of covalent BTK inhibitors and venetoclax. Phosphoinositide 3'-kinase (PI3K) inhibitors (idelalisib and duvelisib) can be prescribed for disease that progresses with BTK inhibitors and venetoclax, but patients require close monitoring for adverse events such as autoimmune conditions and infections. In patients with multiple relapses, chimeric antigen receptor T-cell (CAR-T) therapy with lisocabtagene maraleucel was associated with a 45% complete response rate. The only potential cure for CLL is allogeneic hematopoietic cell transplant, which remains an option after use of targeted agents. Conclusions and Relevance: More than 200 000 people in the US are living with a CLL diagnosis, and CLL causes approximately 4410 deaths each year in the US. Approximately two-thirds of patients eventually need treatment. Highly effective novel targeted agents include BTK inhibitors such as acalabrutinib, zanubrutinib, ibrutinib, and pirtobrutinib or BCL2 inhibitors such as venetoclax.


Subject(s)
Antineoplastic Agents , Leukemia, Lymphocytic, Chronic, B-Cell , Tyrosine Protein Kinase Inhibitors , Aged , Humans , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Immunotherapy, Adoptive , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Receptors, Chimeric Antigen , Tyrosine Protein Kinase Inhibitors/adverse effects , Tyrosine Protein Kinase Inhibitors/therapeutic use , United States/epidemiology
5.
N Engl J Med ; 386(26): 2482-2494, 2022 06 30.
Article in English | MEDLINE | ID: covidwho-1984509

ABSTRACT

BACKGROUND: Ibrutinib, a Bruton's tyrosine kinase inhibitor, may have clinical benefit when administered in combination with bendamustine and rituximab and followed by rituximab maintenance therapy in older patients with untreated mantle-cell lymphoma. METHODS: We randomly assigned patients 65 years of age or older to receive ibrutinib (560 mg, administered orally once daily until disease progression or unacceptable toxic effects) or placebo, plus six cycles of bendamustine (90 mg per square meter of body-surface area) and rituximab (375 mg per square meter). Patients with an objective response (complete or partial response) received rituximab maintenance therapy, administered every 8 weeks for up to 12 additional doses. The primary end point was progression-free survival as assessed by the investigators. Overall survival and safety were also assessed. RESULTS: Among 523 patients, 261 were randomly assigned to receive ibrutinib and 262 to receive placebo. At a median follow-up of 84.7 months, the median progression-free survival was 80.6 months in the ibrutinib group and 52.9 months in the placebo group (hazard ratio for disease progression or death, 0.75; 95% confidence interval, 0.59 to 0.96; P = 0.01). The percentage of patients with a complete response was 65.5% in the ibrutinib group and 57.6% in the placebo group (P = 0.06). Overall survival was similar in the two groups. The incidence of grade 3 or 4 adverse events during treatment was 81.5% in the ibrutinib group and 77.3% in the placebo group. CONCLUSIONS: Ibrutinib treatment in combination with standard chemoimmunotherapy significantly prolonged progression-free survival. The safety profile of the combined therapy was consistent with the known profiles of the individual drugs. (Funded by Janssen Research and Development and Pharmacyclics; SHINE ClinicalTrials.gov number, NCT01776840.).


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Lymphoma, Mantle-Cell , Adenine/administration & dosage , Adenine/analogs & derivatives , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bendamustine Hydrochloride/administration & dosage , Bendamustine Hydrochloride/adverse effects , Disease Progression , Humans , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/mortality , Maintenance Chemotherapy , Piperidines/administration & dosage , Piperidines/adverse effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Pyrazoles/administration & dosage , Pyrazoles/adverse effects , Pyrimidines/administration & dosage , Pyrimidines/adverse effects , Remission Induction , Rituximab/administration & dosage , Rituximab/adverse effects , Survival Analysis
6.
Cancer Cell ; 40(1): 3-5, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1517077

ABSTRACT

Anti-COVID-19 immunity dynamics were assessed in patients with cancer in a prospective clinical trial. Waning of immunity was detected 4-6 months post-vaccination with significant increases in anti-spike IgG titers after booster dosing, and 56% of seronegative patients seroconverted post-booster vaccination. Prior anti-CD20/BTK inhibitor therapy was associated with reduced vaccine efficacy.


Subject(s)
Antibodies, Viral/biosynthesis , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunization, Secondary , Immunoglobulin G/biosynthesis , Neoplasms/immunology , SARS-CoV-2/immunology , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/complications , COVID-19/immunology , Follow-Up Studies , Humans , Immunocompromised Host , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology , Neoplasms/complications , Neoplasms/drug therapy , Prospective Studies , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Rituximab/adverse effects , Rituximab/therapeutic use , Seroconversion , Spike Glycoprotein, Coronavirus/immunology , Vaccination
7.
Am J Clin Dermatol ; 22(5): 693-707, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1361347

ABSTRACT

BACKGROUND: Pivotal phase III studies demonstrated that abrocitinib, an oral, once-daily, JAK1-selective inhibitor, is effective treatment for moderate-to-severe atopic dermatitis (AD) as monotherapy and in combination with topical therapy. OBJECTIVE: The aim of this study was to evaluate the long-term safety of abrocitinib 200 mg and 100 mg in an integrated analysis of a phase IIb study, four phase III studies, and one long-term extension study. METHODS: Two cohorts were analyzed: a placebo-controlled cohort from 12- to 16-week studies and an all-abrocitinib cohort including patients who received one or more abrocitinib doses. Adverse events (AEs) of interest and laboratory data are reported. RESULTS: Total exposure in the all-abrocitinib cohort (n = 2856) was 1614 patient-years (PY); exposure was ≥ 24 weeks in 1248 patients and ≥ 48 weeks in 606 (maximum 108 weeks). In the placebo-controlled cohort (n = 1540), dose-related AEs (200 mg, 100 mg, placebo) were nausea (14.6%, 6.1%, 2.0%), headache (7.8%, 5.9%, 3.5%), and acne (4.7%, 1.6%, 0%). Platelet count was reduced transiently in a dose-dependent manner; 2/2718 patients (200-mg group) had confirmed platelet counts of < 50 × 103/mm3 at week 4. Incidence rates (IRs) were 2.33/100PY and 2.65/100 PY for serious infection, 4.34/100PY and 2.04/100PY for herpes zoster, and 11.83/100PY and 8.73/100PY for herpes simplex in the 200-mg and 100-mg groups, respectively. IRs for nonmelanoma skin cancer, other malignancies, and major adverse cardiovascular events were < 0.5/100PY for both doses. Five venous thromboembolism events occurred (IR 0.30/100PY), all in the 200-mg group. There were three deaths due to gastric carcinoma (diagnosed at day 43), sudden death, and COVID-19. CONCLUSION: Abrocitinib, with proper patient and dose selection, has a manageable tolerability and longer-term safety profile appropriate for long-term use in patients with moderate-to-severe AD. TRIAL REGISTRIES: ClinicalTrials.gov: NCT02780167, NCT03349060, NCT03575871, NCT03720470, NCT03627767, NCT03422822.


Subject(s)
Dermatitis, Atopic/drug therapy , Infections/epidemiology , Protein Kinase Inhibitors/adverse effects , Pyrimidines/adverse effects , Skin Neoplasms/epidemiology , Sulfonamides/adverse effects , Acne Vulgaris/chemically induced , Adolescent , Adult , Aged , Cardiovascular Diseases/epidemiology , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Female , Headache/chemically induced , Herpes Simplex/epidemiology , Herpes Zoster/epidemiology , Humans , Incidence , Lymphocyte Count , Male , Middle Aged , Nausea/chemically induced , Platelet Count , Protein Kinase Inhibitors/administration & dosage , Pyrimidines/administration & dosage , Risk Factors , Sulfonamides/administration & dosage , Time Factors , Venous Thromboembolism/epidemiology , Young Adult
8.
Expert Rev Hematol ; 14(9): 819-830, 2021 09.
Article in English | MEDLINE | ID: covidwho-1349725

ABSTRACT

INTRODUCTION: Ibrutinib is a highly effective drug for patients with chronic lymphocytic leukemia (CLL), and is well tolerated even by older patients and those unfit to receive conventional immuno-chemotherapy. AREAS COVERED: The occurrence of adverse events was revealed as a major cause of ibrutinib failure in the real-world. Ibrutinib-induced lymphocytosis carries the risk of an untimely interruption of therapy because it may be misinterpreted as disease progression. In addition, drug interactions can worsen ibrutinib-associated toxicities by increasing the plasma concentration of ibrutinib. In this review, we present a case of major hemorrhage and atrial fibrillation (AF) during ibrutinib use and summarize the adverse events associated with ibrutinib. Furthermore, the practical management of ibrutinib-associated toxicities was covered with reference to a drug interaction mechanism. EXPERT OPINION: Clinicians should examine the prescribed drugs prior to ibrutinib initiation and carefully monitor toxicities while taking ibrutinib. A reduced dose of ibrutinib with the concurrent use of CYP3A inhibitors such as antifungal agents could be an attractive strategy to reduce toxicities and may confer financial benefits. Reducing unexpected toxicities is as significant as achieving treatment response in the era of life-long therapy with ibrutinib in patients with CLL.


Subject(s)
Adenine/analogs & derivatives , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Piperidines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Adenine/adverse effects , Adenine/pharmacology , Adenine/therapeutic use , Aged , COVID-19/complications , Disease Management , Drug Interactions , Drug-Related Side Effects and Adverse Reactions/etiology , Drug-Related Side Effects and Adverse Reactions/therapy , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Male , Piperidines/adverse effects , Piperidines/pharmacology , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacology
9.
Int J Mol Sci ; 22(13)2021 Jun 24.
Article in English | MEDLINE | ID: covidwho-1304662

ABSTRACT

The aim of this study was to evaluate the effect of everolimus, a mammalian target of rapamycin (mTOR) inhibitor, on red blood cell parameters in the context of iron homeostasis in patients with tuberous sclerosis complex (TSC) and evaluate its effect on cell size in vitro. Everolimus has a significant impact on red blood cell parameters in patients with TSC. The most common alteration was microcytosis. The mean MCV value decreased by 9.2%, 12%, and 11.8% after 3, 6, and 12 months of everolimus treatment. The iron level declined during the first 3 months, and human soluble transferrin receptor concentration increased during 6 months of therapy. The size of K562 cells decreased when cultured in the presence of 5 µM everolimus by approximately 8%. The addition of hemin to the cell culture with 5 µM everolimus did not prevent any decrease in cell size. The stage of erythroid maturation did not affect the response to everolimus. Our results showed that the mTOR inhibitor everolimus caused red blood cell microcytosis in vivo and in vitro. This effect is not clearly related to a deficit of iron and erythroid maturation. This observation confirms that mTOR signaling plays a complex role in the control of cell size.


Subject(s)
Cell Size/drug effects , Erythrocytes/drug effects , Erythrocytes/pathology , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Adolescent , Biomarkers , Cell Differentiation/drug effects , Cell Line , Child , Child, Preschool , Erythrocyte Indices , Erythrocytes/metabolism , Everolimus/administration & dosage , Everolimus/adverse effects , Everolimus/pharmacology , Flow Cytometry , Humans , Iron/metabolism , K562 Cells , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects
10.
Lancet Respir Med ; 9(9): 957-968, 2021 09.
Article in English | MEDLINE | ID: covidwho-1275790

ABSTRACT

BACKGROUND: The major complication of COVID-19 is hypoxaemic respiratory failure from capillary leak and alveolar oedema. Experimental and early clinical data suggest that the tyrosine-kinase inhibitor imatinib reverses pulmonary capillary leak. METHODS: This randomised, double-blind, placebo-controlled, clinical trial was done at 13 academic and non-academic teaching hospitals in the Netherlands. Hospitalised patients (aged ≥18 years) with COVID-19, as confirmed by an RT-PCR test for SARS-CoV-2, requiring supplemental oxygen to maintain a peripheral oxygen saturation of greater than 94% were eligible. Patients were excluded if they had severe pre-existing pulmonary disease, had pre-existing heart failure, had undergone active treatment of a haematological or non-haematological malignancy in the previous 12 months, had cytopenia, or were receiving concomitant treatment with medication known to strongly interact with imatinib. Patients were randomly assigned (1:1) to receive either oral imatinib, given as a loading dose of 800 mg on day 0 followed by 400 mg daily on days 1-9, or placebo. Randomisation was done with a computer-based clinical data management platform with variable block sizes (containing two, four, or six patients), stratified by study site. The primary outcome was time to discontinuation of mechanical ventilation and supplemental oxygen for more than 48 consecutive hours, while being alive during a 28-day period. Secondary outcomes included safety, mortality at 28 days, and the need for invasive mechanical ventilation. All efficacy and safety analyses were done in all randomised patients who had received at least one dose of study medication (modified intention-to-treat population). This study is registered with the EU Clinical Trials Register (EudraCT 2020-001236-10). FINDINGS: Between March 31, 2020, and Jan 4, 2021, 805 patients were screened, of whom 400 were eligible and randomly assigned to the imatinib group (n=204) or the placebo group (n=196). A total of 385 (96%) patients (median age 64 years [IQR 56-73]) received at least one dose of study medication and were included in the modified intention-to-treat population. Time to discontinuation of ventilation and supplemental oxygen for more than 48 h was not significantly different between the two groups (unadjusted hazard ratio [HR] 0·95 [95% CI 0·76-1·20]). At day 28, 15 (8%) of 197 patients had died in the imatinib group compared with 27 (14%) of 188 patients in the placebo group (unadjusted HR 0·51 [0·27-0·95]). After adjusting for baseline imbalances between the two groups (sex, obesity, diabetes, and cardiovascular disease) the HR for mortality was 0·52 (95% CI 0·26-1·05). The HR for mechanical ventilation in the imatinib group compared with the placebo group was 1·07 (0·63-1·80; p=0·81). The median duration of invasive mechanical ventilation was 7 days (IQR 3-13) in the imatinib group compared with 12 days (6-20) in the placebo group (p=0·0080). 91 (46%) of 197 patients in the imatinib group and 82 (44%) of 188 patients in the placebo group had at least one grade 3 or higher adverse event. The safety evaluation revealed no imatinib-associated adverse events. INTERPRETATION: The study failed to meet its primary outcome, as imatinib did not reduce the time to discontinuation of ventilation and supplemental oxygen for more than 48 consecutive hours in patients with COVID-19 requiring supplemental oxygen. The observed effects on survival (although attenuated after adjustment for baseline imbalances) and duration of mechanical ventilation suggest that imatinib might confer clinical benefit in hospitalised patients with COVID-19, but further studies are required to validate these findings. FUNDING: Amsterdam Medical Center Foundation, Nederlandse Organisatie voor Wetenschappelijk Onderzoek/ZonMW, and the European Union Innovative Medicines Initiative 2.


Subject(s)
COVID-19/therapy , Imatinib Mesylate/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Respiration, Artificial/statistics & numerical data , Respiratory Insufficiency/therapy , Aged , COVID-19/complications , COVID-19/diagnosis , COVID-19/virology , Capillary Permeability/drug effects , Combined Modality Therapy/adverse effects , Combined Modality Therapy/methods , Double-Blind Method , Female , Humans , Imatinib Mesylate/adverse effects , Male , Middle Aged , Netherlands , Oxygen/administration & dosage , Placebos/administration & dosage , Placebos/adverse effects , Protein Kinase Inhibitors/adverse effects , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/virology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors , Treatment Outcome
11.
Acta Haematol ; 144(6): 620-626, 2021.
Article in English | MEDLINE | ID: covidwho-1263968

ABSTRACT

INTRODUCTION: Currently, severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection is a major public health problem worldwide. Although most patients present a mild infection, effective strategies are required for patients who develop the severe disease. Anti-inflammatory treatment with JAK inhibitors has been considered in SARS-CoV-2. METHODS: In this study, we presented our experience in a group of severe SARS-CoV-2 Chilean patients. This prospective study was performed on consecutive patients presenting severe respiratory failure owing to COVID-19 or high-risk clinical condition associated with SARS-CoV-2, and who were treated with ruxolitinib for management of associated inflammation. Overall, 18 patients presenting SARS-CoV-2 viral-induced hyperinflammation were treated with ruxolitinib, with 16 patients previously treated with steroids, 4 with tocilizumab, and 3 with both treatments. RESULTS: Ten patients evolved with favorable response, including 7 patients admitted with severe respiratory failure (PaFi less than 200 mm Hg in high-flow nasal cannula), presenting complete regression of hyperinflammation, regression of the lung lesions, and subsequent discharge. In the remaining 8 patients, 25% showed reduced inflammation, but early discharge was not achieved owing to the slow evolution of respiratory failure. Unfortunately, 3 patients demonstrated a severe respiratory failure. The early initiation of ruxolitinib was found to be associated with better clinical evolution (p < 0.005). CONCLUSION: In this study, ruxolitinib resolved hyperinflammatory state in 55% of the patients, regardless of the previous steroid or tocilizumab therapy. Unfortunately, few patients demonstrated severe evolution despite ruxolitinib therapy. Notably, the treatment starting time appears to play an important role in achieving good outcomes. Further validation in randomized controlled trials is crucial.


Subject(s)
COVID-19/complications , Inflammation/drug therapy , Nitriles/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/pathology , COVID-19/virology , Chile , Female , Humans , Inflammation/etiology , Male , Middle Aged , Nitriles/adverse effects , Prospective Studies , Protein Kinase Inhibitors/adverse effects , Pyrazoles/adverse effects , Pyrimidines/adverse effects , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/etiology , SARS-CoV-2/isolation & purification , Steroids/therapeutic use , Thrombocytopenia/etiology , Treatment Outcome
12.
Sci Rep ; 11(1): 3847, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-1242037

ABSTRACT

Ruxolitinib is the first janus kinase 1 (JAK1) and JAK2 inhibitor that was approved by the United States Food and Drug Administration (FDA) agency for the treatment of myeloproliferative neoplasms. The drug targets the JAK/STAT signalling pathway, which is critical in regulating the gliogenesis process during nervous system development. In the study, we assessed the effect of non-maternal toxic dosages of ruxolitinib (0-30 mg/kg/day between E7.5-E20.5) on the brain of the developing mouse embryos. While the pregnant mice did not show any apparent adverse effects, the Gfap protein marker for glial cells and S100ß mRNA marker for astrocytes were reduced in the postnatal day (P) 1.5 pups' brains. Gfap expression and Gfap+ cells were also suppressed in the differentiating neurospheres culture treated with ruxolitinib. Compared to the control group, adult mice treated with ruxolitinib prenatally showed no changes in motor coordination, locomotor function, and recognition memory. However, increased explorative behaviour within an open field and improved spatial learning and long-term memory retention were observed in the treated group. We demonstrated transplacental effects of ruxolitinib on astrogenesis, suggesting the potential use of ruxolitinib to revert pathological conditions caused by gliogenic-shift in early brain development such as Down and Noonan syndromes.


Subject(s)
Astrocytes/drug effects , Learning/drug effects , Maternal Exposure , Memory/drug effects , Neurogenesis/drug effects , Nitriles/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage , Age Factors , Animals , Astrocytes/metabolism , Behavior, Animal/drug effects , Biomarkers , Female , Janus Kinases/antagonists & inhibitors , Male , Maternal Exposure/adverse effects , Mice , Neurogenesis/genetics , Nitriles/adverse effects , Organ Specificity/drug effects , Pregnancy , Protein Kinase Inhibitors/adverse effects , Pyrazoles/adverse effects , Pyrimidines/adverse effects
16.
Mol Cancer Res ; 19(4): 549-554, 2021 04.
Article in English | MEDLINE | ID: covidwho-1058113

ABSTRACT

The outbreak of the novel coronavirus disease 2019 (COVID-19) has emerged as one of the biggest global health threats worldwide. As of October 2020, more than 44 million confirmed cases and more than 1,160,000 deaths have been reported globally, and the toll is likely to be much higher before the pandemic is over. There are currently little therapeutic options available and new potential targets are intensively investigated. Recently, Bruton tyrosine kinase (BTK) has emerged as an interesting candidate. Elevated levels of BTK activity have been reported in blood monocytes from patients with severe COVID-19, compared with those from healthy volunteers. Importantly, various studies confirmed empirically that administration of BTK inhibitors (acalabrutinib and ibrutinib) decreased the duration of mechanical ventilation and mortality rate for hospitalized patients with severe COVID-19. Herein, we review the current information regarding the role of BTK in severe acute respiratory syndrome coronavirus 2 infections and the suitability of its inhibitors as drugs to treat COVID-19. The use of BTK inhibitors in the management of COVID-19 shows promise in reducing the severity of the immune response to the infection and thus mortality. However, BTK inhibition may be contributing in other ways to inhibit the effects of the virus and this will need to be carefully studied.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Adenine/analogs & derivatives , Adenine/pharmacology , Agammaglobulinaemia Tyrosine Kinase/metabolism , Antiviral Agents/adverse effects , Benzamides/pharmacology , COVID-19/complications , COVID-19/enzymology , Humans , Lung/drug effects , Lung/virology , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/virology , Piperidines/pharmacology , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacology , Pyrazines/pharmacology , Thrombosis/drug therapy , Thrombosis/virology
17.
Int J Mol Sci ; 22(1)2020 Dec 30.
Article in English | MEDLINE | ID: covidwho-1006950

ABSTRACT

Nintedanib is a synthetic orally active tyrosine kinase inhibitor, whose main action is to inhibit the receptors of the platelet-derived growth factor, fibroblast growth factor and vascular endothelial growth factor families. The drug also affects other kinases, including Src, Flt-3, LCK, LYN. Nintedanib is used in the treatment of idiopathic pulmonary fibrosis, chronic fibrosing interstitial lung diseases and lung cancer. The mechanism of action suggests that nintedanib should be considered one of the potential agents for inhibiting and revising the fibrosis process related to COVID-19 infections. Due to the known induction of coagulation pathways during COVID-19 infections, possible interaction between nintedanib and anticoagulant seems to be an extremely important issue. In theory, nintedanib could increase the bleeding risk, thrombosis and lead to thrombocytopenia. The data from clinical trials on the concomitant use of nintedanib and antithrombotic agents is very limited as this patient group was within the standard exclusion criteria. Nintedanib is an important therapeutic option, despite its interaction with anticoagulants. If anticoagulant therapy is necessary, the more effective and safer option is the concomitant administration of DOACs and nintedanib, especially when drug-monitored therapy will be used in patients at high risk of bleeding complications.


Subject(s)
Anticoagulants/pharmacology , Hemorrhage/etiology , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Anticoagulants/therapeutic use , Antidotes/pharmacology , Antineoplastic Agents/pharmacology , Blood Coagulation Disorders/complications , Blood Coagulation Disorders/drug therapy , COVID-19/complications , COVID-19/metabolism , Drug Interactions , Hemorrhage/epidemiology , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Indoles/adverse effects , Indoles/therapeutic use , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Risk Factors , COVID-19 Drug Treatment
18.
Cell Cycle ; 19(24): 3399-3405, 2020 12.
Article in English | MEDLINE | ID: covidwho-972502

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19. Until now, diverse drugs have been used for the treatment of COVID-19. These drugs are associated with severe side effects, e.g. induction of erythrocyte death, named eryptosis. This massively affects the oxygen (O2) supply of the organism. Therefore, three elementary aspects should be considered simultaneously: (1) a potential drug should directly attack the virus, (2) eliminate virus-infected host cells and (3) preserve erythrocyte survival and functionality. It is known that PKC-α inhibition enhances the vitality of human erythrocytes, while it dose-dependently activates the apoptosis machinery in nucleated cells. Thus, the use of chelerythrine as a specific PKC-alpha and -beta (PKC-α/-ß) inhibitor should be a promising approach to treat people infected with SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Benzophenanthridines/pharmacology , COVID-19 Drug Treatment , Erythrocytes/immunology , Protein Kinase C beta/antagonists & inhibitors , Protein Kinase C-alpha/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Respiratory Tract Diseases/virology , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Apoptosis/drug effects , Benzophenanthridines/adverse effects , Benzophenanthridines/therapeutic use , COVID-19/immunology , COVID-19/metabolism , DNA-Directed RNA Polymerases/metabolism , Erythrocytes/drug effects , Erythrocytes/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Protein Biosynthesis/drug effects , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , RNA Viruses/genetics , RNA Viruses/metabolism , Respiratory Tract Diseases/enzymology , Respiratory Tract Diseases/metabolism
19.
Blood ; 137(2): 185-189, 2021 01 14.
Article in English | MEDLINE | ID: covidwho-953565

ABSTRACT

Vaccinations are effective in preventing infections; however, it is unknown if patients with chronic lymphocytic leukemia (CLL) who are treatment naïve (TN) or receiving Bruton tyrosine kinase inhibitors (BTKi's) respond to novel adjuvanted vaccines. Understanding the effect of BTKi's on humoral immunity is timely because BTKi's are widely used and vaccination against coronavirus disease 2019 is urgently needed. In 2 open-label, single-arm clinical trials, we measured the effect of BTKi's on de novo immune response against recombinant hepatitis B vaccine (HepB-CpG) and recall response against recombinant zoster vaccine (RZV) in CLL patients who were TN or on BTKi. The primary end point was serologic response to HepB-CpG (anti-hepatitis B surface antibodies ≥10 mIU/mL) and RZV (≥fourfold increase in anti-glycoprotein E). The response rate to HepB-CpG was lower in patients on BTKi (3.8%; 95% confidence interval [CI], 0.7-18.9) than patients who were TN (28.1%; 95% CI, 15.6-45.4; P = .017). In contrast, the response rate to RZV did not differ significantly between the BTKi (41.5%; 95% CI, 27.8-56.6) and TN cohorts (59.1%; 95% CI, 38.7-76.7; P = .2). BTKi's were associated with a decreased de novo immune response following HepB-CpG, whereas recall immune response following RZV was not significantly affected by BTKi therapy. These trials were registered at www.clinicaltrials.gov as #NCT03685708 (Hep-CpG) and #NCT03702231 (RZV).


Subject(s)
Hepatitis B Vaccines/immunology , Herpes Zoster Vaccine/immunology , Immunity , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Protein Kinase Inhibitors/adverse effects , Vaccines, Synthetic/immunology , Adjuvants, Immunologic , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Aged , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Male , Middle Aged , Patient Outcome Assessment , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Vaccination
20.
Zhongguo Fei Ai Za Zhi ; 23(10): 858-865, 2020 Oct 20.
Article in English | MEDLINE | ID: covidwho-914583

ABSTRACT

BACKGROUND: Anlotinib is a newly developed small molecule multiple receptor tyrosine kinase (RTK) inhibitor that was approved for the treatment of patients with lung cancer in China. We aim to report 3 cases of rare complication of anlotinib-bronchial fistula (BF) during the treatment of lung cancer patients and summarize the possible causes. METHODS: We collected three patients who developed BF due to anlotinib treatment, and conducted a search of Medline and PubMed for medical literature published between 2018 and 2020 using the following search terms: "anlotinib," "lung cancer," and "fistula." RESULTS: Our literature search produced two case reports (three patients) which, in addition to our three patients. We collated the patients' clinical characteristics including demographic information, cancer type, imaging features, treatment received, risk factors for anlotinib related BF, and treatment-related outcomes. The six patients shared some common characteristics: advanced age, male, concurrent infection symptoms, diabetes mellitus (DM), advanced squamous cell and small cell lung cancers, centrally located tumors, tumor measuring ≥5 cm in longest diameter, and newly formed tumor cavitation after multi-line treatment especially after receiving radiotherapy. Fistula types included broncho-pericardial fistula, broncho-pleural fistula, and esophago-tracheobronchial fistula. Six patients all died within 6 months. CONCLUSIONS: Although anlotinib is relatively safe, it is still necessary to pay attention to the occurrence of BF, a rare treatment side effect that threatens the quality of life and overall survival of patients. Anlotinib, therefore, requires selective use and close observation of high-risk patients.


Subject(s)
Antineoplastic Agents/adverse effects , Bronchial Fistula/etiology , Indoles/adverse effects , Lung Neoplasms/drug therapy , Quinolines/adverse effects , Aged , Antineoplastic Agents/therapeutic use , Bronchial Fistula/diagnostic imaging , China , Humans , Indoles/therapeutic use , Male , Middle Aged , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Quinolines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL